AGENDA MANAGEMENT SHEET

Name of Committee	Communities Overview and Scrutiny Committee
Date of Committee	31st August 2011
Report Title	Report and Recommendations of the Residual Waste Task \& Finish Group
Summary	This report outlines the findings and recommendations of the Residual Waste Task \& Finish Group.
For further information please contact:	Richard Maybey Democratic Services Officer Tel: 01926476876 richardmaybey@warwickshire.gov.uk
Would the recommended decision be contrary to the Budget and Policy Framework?	No
Background papers	None
CONSULTATION ALREADY U	NDERTAKEN:- Details to be specified
Other Committees	
Local Member(s)	X N / A
Other Elected Members	X Cllr Chattaway, Cllr Whitehouse, Cllr Saint, Cllr Sweet
Cabinet Member	X Cllr Cockburn
Chief Executive	
Legal	X Ian Marriott
Finance	$\square \ldots \ldots$.
Other Strategic Directors	X David Carter, Strategic Director for Resources, Monica Fogarty, Strategic Director for Communities
District Councils	$\square \ldots .$.
Health Authority	

Police

Other Bodies/Individuals
FINAL DECISION NO

SUGGESTED NEXT STEPS:

Further consideration by this Committee

To Council
To Cabinet

To an O \& S Committee

To an Area Committee

Further Consultation

Details to be specified
\qquad
\qquad
Date to be set

\square
\square

Communities Overview and Scrutiny Committee 31st August 2011

Report and Recommendations of the Residual Waste Task \& Finish Group

ClIr Chattaway, Chair of the Residual Waste Task \& Finish Group

Recommendation

The Committee agrees the findings and recommendations of the Residual Waste Task \& Finish Group and forwards the report on to Cabinet for consideration.

Task \& Finish Group Recommendations

The following recommendations relate to the potential procurement of a new residual waste disposal solution, which would begin operation from 2013. The procurement process for this solution would not start until investigations have identified that no suitable arrangements for waste disposal can be realised in partnership with other Waste Disposal Authorities (see paragraph 1.5).

1. Any new residual waste contract(s) should seek to ensure maximum flexibility for the authority - for example, to allow the guaranteed minimum tonnage to be adjusted in line with decreasing waste volumes
2. When assessing bids from potential providers, at least equal weighting should be applied to contract flexibility as the initial cost per tonne
3. In recognition of the uncertainty associated with future residual waste, and in order to take advantage of potential new developments in waste disposal technology, the preference should be for a contract length of no more than 15 years
4. The Communities Overview \& Scrutiny Committee should consider reconvening the Task \& Finish Group when the preferred spatial option has been published to identify any potential implications it could have on the residual waste contract(s)
5. The preferences expressed within the 2005 Waste Strategy for a thermal treatment system and a centralised energy from waste facility should not be given favour when assessing bids, and the authority should maintain a "technology-neutral" approach
6. The authority should continue its existing policy of letting multiple waste disposal contracts, but also ensure a mix of technologies is utilised. This will mitigate the risk of being constrained by technologies that become outdated or unaffordable due to new disposal innovations or future legislative changes
7. In order to support recommendations 1, 2, 3, 5 and 6, the authority should not pre-specify its requirements in detail nor prepare a detailed specification before going out to tender
8. As a consequence of recommendation 7 , and with an understanding that various technical solutions are available to meet the authority's needs, the 'competitive dialogue' procurement procedure should be adopted (subject to final legal advice)

1. Introduction

1.1 Warwickshire County Council currently treats approximately 275,000 tonnes of waste per year via a mix of recycling, composting, landfill and energy from waste.
1.2 Between 2013 and 2016, a number of our residual waste contracts are due to expire. This presents an opportunity for the authority to yield savings by procuring more cost-effective arrangements.
1.3 Specifically, these expiring contracts account for approximately 70,000 tonnes of residual waste per year and are held with:

- Landfill site operators
- Coventry's Energy from Waste (EfW) facility
- HW Martins' Refuse Derived Fuel (RDF) plant
1.4 Cabinet has instructed that any new waste contract(s) for Warwickshire should support the diversion of waste from landfill, thereby avoiding the rising cost of landfill tax and ensuring compliance with Landfill Allowance Targets (LATs).
1.5 There are currently two possible options for the authority to pursue:

Option 1: Partnership

Investigate ways to address our disposal needs in partnership with other Waste Disposal Authorities.

Option 2: Procure a new residual waste contract

Approach the market to procure a new residual waste disposal contract. This would seek the best combination of value and flexibility, and not be restricted to any particular waste disposal technology.

This report relates to Option 2.

2. Market testing

2.1 In order to understand the different technology solutions currently available for waste disposal, an Industry Day was held in June 2011.
2.2 An open invitation was made to waste disposal contractors to observe presentations by County Council officers explaining Warwickshire's requirements. Contractors were then given the opportunity to explain their potential offer in a closed session. This was closely controlled with a standardised list of questions and a set time limit to ensure fairness and equal opportunity.

3. Next steps

3.1 Based on the information gathered at the Industry Day, along with further market testing and legal discussions, the County Council's waste management team will form recommendations to Cabinet on the most appropriate procurement strategy. The process will then move forward in accordance with the requirements of the Official Journal of the European Union (OJEU)

4. Role of the Task \& Finish Group

4.1 To ensure the involvement of Elected Members within this process, the Communities Overview \& Scrutiny Committee recommended that a Task \& Finish (T\&F) Group be assembled to oversee the pre-procurement phase and ensure all relevant issues and risks are being considered.
4.2 The Overview \& Scrutiny Board commissioned this T\&F Group, and agreed the membership as follows:

- Councillor Richard Chattaway (Chair)
- Councillor Clare Hopkinson
- Councillor Barry Lobbett
- Councillor John Whitehouse
4.3 The group's activity to date has included:
- Observing the presentations and closed sessions at the Industry Day
- Developing a Scrutiny Review Outline, to define the rationale, objectives and parameters of the review (see Appendix A)
- Holding a Select Committee to consider evidence, understand technical information and receive views of partners, stakeholders and independent bodies (see Appendices B-G)
- Reviewing relevant documentation, including the County Council's Alternative Residual Waste Treatment Plan and future waste forecasts
4.4 Given that the contract length could potentially run to 25 years, and will therefore represent significant cumulative cost to the taxpayer, the principal objective of the T\&F Group has been to ensure robust risk-management processes are applied at every stage of the procurement.
4.5 In reaching its findings and recommendations, the group has considered a range of issues, including waste forecasting, environmental and community impacts, waste disposal technologies and different contract types. A summary of these findings follows below.

5. Forecasting waste volumes

5.1 Background

The volume of residual waste currently anticipated for this contract is approximately 70,000 tonnes per year. However, given the drive towards waste minimisation and the county's increasing rate of recycling, it is possible that this will reduce significantly in future years.

Therefore, a key requirement of the contract terms and conditions will be the need for flexibility. Warwickshire does not want to commit to paying for waste disposal capacity it does not require.

5.2 Evidence provided at Select Committee

Members received a presentation on the past, present and future of Warwickshire's waste (Appendix C), which provided an overview of the factors considered in projecting future waste volumes.

5.3 Findings

Based on the evidence provided and the ensuing discussion, it was noted that:

- The factors that have been considered in forecasting future waste volumes include:
- Population growth in the county
- Population migration (particularly inward migration from Coventry)
- Assumptions on waste volumes per household
- Assumptions on recycling/composting rates
- Waste forecasting is not a scientific process, and many factors present a risk to the accuracy of such projections. For example:
- Future legislative changes, such as changes to packaging and landfill restrictions
- The success or otherwise of waste minimisation strategies
- The accuracy of new housing forecasts
- Changes to the recycling ceiling (i.e., the limit on the proportion of overall waste that can be recycled) as new solutions are developed. For example, the recycling of street sweepings was not possible 5 years ago, but will account for 10,000 tonnes starting in 2012
- Decreasing waste volumes at Household Waste Recycling Centres as a result of the Government's waste prevention programme for small businesses
5.4 While Members were satisfied that Warwickshire's waste forecasting has taken account of all the relevant factors as much as reasonably possible, it was accepted that there are many variables within these and the error bars associated with the projections are potentially very wide. There was a consensual view from Members, officers and invited representatives that in light of this, any future contract(s) should attempt to cater for changes in demand.

Recommendations

1. Any new residual waste contract(s) should seek to ensure maximum flexibility for the authority - for example, to allow the guaranteed minimum tonnage to be adjusted in line with decreasing waste volumes
2. When assessing bids from potential providers, at least equal weighting should be applied to contract flexibility as the initial cost per tonne
3. In recognition of the uncertainty associated with future residual waste, and in order to take advantage of potential new developments in waste disposal technology, the preference should be for a contract length of no more than 15 years

6. Environmental and community impacts

6.1 Background

As community representatives, Elected Members have a role in ensuring that any new developments or services do not adversely impact the environment or living conditions of their local residents.

Consequently, the Task \& Finish Group sought to gain an understanding of how the authority will be assessing the environmental and community impact of potential bids.
6.2 Evidence provided at Select Committee

Members received a presentation about the Warwickshire Waste Core Strategy (Appendix D). This sets out the policy principles that must be applied in any new waste development, including two that relate specifically to environmental and community impact.
6.3 The presentation also outlined the process by which Warwickshire's preferred "spatial option" is being selected. Subject to consultation, this is likely to be option 5 (Appendix D, slide 11), which is a settlement hierarchy based on areas of higher population and/or existing waste management capacity. In developing the spatial options, a thorough impact assessment was undertaken, which looked at environmental and community impacts.

6.3 Findings

Based on the evidence provided and the ensuing discussion, it was noted that:

- The policy principles related to environmental and community impact could be seen to conflict with each other in terms of protecting the countryside on the one hand, but not impacting residents of built-up areas on the other
- However, it was acknowledged that planning assessments are very dependent on the individual case. All policies within the Waste Core Strategy will be considered when assessing each proposal, and a judgement will be made accordingly
- Proposals will have to comply with the preferred spatial option, which is likely to be option 5 - offering strong infrastructure links and enabling collaboration with Coventry
- Under option 5, any new waste development with capacity over 50,000 tonnes would have to be located in a 'primary' area: Nuneaton, Bedworth, Rugby, Kenilworth, Warwick, Leamington Spa or Stratford-upon-Avon
- However, if it can be justified that no suitable site is available in a primary area, it could be located in a 'secondary' area: Atherstone, Coleshill or Southam. These were selected based on their proximity to infrastructure links
- In considering the different spatial options, a Sustainability Matrix was used to assess the short-term, medium-term and long-term impacts (Appendix D, slides 9-10)
6.4 Having considered the evidence above, Members were satisfied that sufficient work has been undertaken to robustly assess the environmental and community impacts of potential waste developments.
6.5 The Waste Core Strategy has clear policies relating to these particular impacts, and the preferred spatial option (when published) will restrict new developments to built-up residential areas, rather than open green spaces.
6.6 Members raised concern about a potential conflict between policies DM1 and DM2, but were assured by officers that assessments will be judged on a case-by-case basis.
6.7 Members were assured that the work already undertaken in developing the Waste Core Strategy and the preferred spatial option will underpin the procurement of any new contract(s) - and therefore environmental and community impacts will be properly assessed.
6.8 However, given that final publication and submission of the spatial option has not yet occurred, Members were keen for continued scrutiny and oversight during the procurement process to ensure compliance with its final policies.

Recommendations:

4. The Communities Overview \& Scrutiny Committee should consider reconvening the Task \& Finish Group when the preferred spatial option has been published to identify any potential implications it could have on the residual waste contract(s)

7. Understanding the technologies available

7.1 Background

As part of Warwickshire's 2005 Waste Strategy, an analysis was undertaken of the different treatment technologies available that support diversion from landfill. A number of different scenarios for collection and disposal within Warwickshire were also assessed. The conclusion from this analysis was as follows:

- Preferred technology: a thermal treatment system generating energy from a non-fossil source
- Preferred scenario: 40% recycling by 2010 , centralised energy from waste facility, separate collection of kitchen/food waste and in-vessel composting
7.2 The 2005 Waste Strategy was scheduled to be reviewed and refreshed in 2010. However, this was delayed due to governmental changes, national waste reviews and the abandonment of Project Transform.
7.3 Consequently, the preferences expressed in the 2005 strategy could be deemed out of date for a contract that is to be let in 2012 (at the earliest). In recognition of this, Warwickshire is adopting a "technology neutral" approach to procurement, and is considering everything currently available in the market.
7.4 The Industry Day in June 2011 gave opportunity for market providers to present their solutions to the authority. The following technologies were presented:
- Mechanical Biological Treatment (MBT)
- Refuse Derived Fuel (RDF)
- Advanced Thermal Treatment (ATT)
- Energy from Waste (EfW)
- Autoclave

7.5 Evidence provided at Select Committee

In order to verify the information received at the Industry Day, Members requested an independent perspective on the technologies available. This was provided at the Select Committee by an independent consultancy firm, SKM Enviros, who delivered an overview and comparison of what it sees as the main viable technologies ${ }^{1}$ (Appendix E).
7.6 The consultant confirmed that flexibility should be the main priority for any authority seeking a new residual waste contract, due to the many uncertainties and variables ahead for the waste market - particularly with regard to changing waste volumes, composition and legislation.

[^0]7.7 The following points were noted about the different technologies:

- MBT
- This is a mechanical separation and sorting process that enables recyclables to be extracted from residual waste
- The remaining residue is subjected to a biological treatment that breaks the waste down into more usable fractions and a more stable state for landfill
- A bio-drying process can be used prior to MBT to make the sorting/recycling process more effective
- MBT is only a pre-treatment option - waste requires further treatment or disposal
- An MBT plant can be partnered with an Aerobic Digestion plant, which generates a low-quality compost-like output, or an Anaerobic Digestion plant, which generates a gas that can be used to generate electricity
- MBT is a flexible solution that can adapt to increases and decreases in kerbside recycling rates
- Outputs include: recyclables, compost, compost-like output, biogas for electricity, RDF
- ATT
- ATT can be performed in relatively small-sized facilities, offering greater flexibility than other technologies that require a higher minimum tonnage
- There are two main types of ATT: pyrolysis and gasification
- Pyrolysis uses the least amount of oxygen and requires a heat source. Waste needs to be pre-treated via MBT. It outputs a pyrolysis oil that can be used as a fuel for generating electricity
- Gasification uses more oxygen than pyrolysis and does not require a heat source. It outputs a syngas that can be used as a fuel for generating electricity, but also some hazardous residue
- Outputs include: recyclable metals, fuel for electricity, char/ash/residue for landfilling
- EfW
- This requires no pre-treatment of waste
- Virtually any waste stream can be accepted
- A large-capacity facility is needed to make it efficient
- The incineration process creates bottom ash, fly ash and dirty exhaust gases
- The primary output is heat, which can be used locally (e.g., to heat a swimming pool) or to generate electricity from steam
- Outputs include: recyclable metals, heat for electricity, ash for landfilling, exhaust gas for cleaning
- MHT
- This is a "steam-cleaning"-like treatment, which makes it easier to recycle and process residual waste
- It requires a heat input
- It has a limited commercial presence in the UK
- Outputs include: mixed recyclables, floc or fibres for re-use or RDF, rejected material for landfilling
7.8 A representative from Friends of the Earth then delivered a presentation (Appendix F) covering the following points:
- Warwickshire is making very good progress with regard to recycling rates and waste minimisation compared with neighbouring authorities
- Despite anticipated housing growth and population increases, Warwickshire should be planning for a reduction in residual waste volumes
- Any new facility should be located in the south of the county and allow for flexible tonnages
- All options should be explored before letting a new contract, such as utilising spare capacity on the county borders (e.g., Cotesbach in Leicestershire)
- The preference should be for shorter contracts in smaller local plants to take advantage of new developments
- Spare landfill capacity should be utilised, but only with stable, non-carbon waste that does not emit methane during decomposition

7.9 Findings

Based on the evidence provided and the ensuing discussion, it was noted that:

- Warwickshire is not limited to a certain size of facility. Modular technologies such as MBT and ATT can be sized according to need, while those that require a larger capacity such as EfW can be topped up with commercial waste or residual waste from neighbouring authorities
- The efficiency of the different technologies in diverting waste from landfill has been independently rated by SKM Enviros (Appendix D, slide 28), with EfW and ATT being the most efficient
- The overall efficiency of the different technologies is difficult to assess, as it depends on the value and usefulness of the outputs
- In terms of environmental impact, all technologies produce some degree of emissions. MBT produces mainly Carbon Dioxide (CO2), while ATT and EfW produce ash and CO2
- ATT and EfW are required to meet certain emissions standards as part of the Waste Incineration Directive
- There may be a tax on carbon emissions from EfW plants in future years
- Any carbon-based residue that is sent to landfill will eventually result in the release of methane
- It is difficult to evaluate technologies according to their environmental impact, as emissions are released at different stages
7.10 With consideration to the advantages and disadvantages of each technology as explained by the independent consultant, and in recognition of the uncertainty over future waste volumes, the T\&F Group would make the following recommendations.

Recommendations

5. The preferences expressed within the 2005 Waste Strategy for a thermal treatment system and a centralised energy from waste facility should not be given favour when assessing bids, and the authority should maintain a "technology-neutral" approach
6. The authority should continue its existing policy of letting multiple waste disposal contracts, but also ensure a mix of technologies is utilised. This will mitigate the risk of being constrained by technologies that become outdated or unaffordable due to new disposal innovations or future legislative changes

8. Understanding the different types of contract

8.1 Background

From a legal perspective, if the authority is intending to procure a waste disposal contract likely to exceed the EU threshold of $£ 156,442$, it must follow EU Procurement guidelines.
8.2 These state that an advert must be published in the EU Official Journal (OJEU) and the authority must decide which procurement procedure it will use. There are four main procedures to choose from: open, restricted, negotiated or competitive dialogue. Of these, the restricted procedure and the competitive dialogue are the most suited to a residual waste disposal contract.

8.3 Evidence provided at Select Committee

A Senior Solicitor from the County Council circulated a briefing note (Appendix G) that detailed the processes and principles associated with each option, a series of key questions for the authority to consider and some initial legal advice.

8.4 Findings

Members gained a clear understanding of the two contract options. The key points of note were:

- Restricted
- This contract type would require the authority to clearly pre-specify in detail all the requirements of the contract before inviting tenders
- Once procurement begins, negotiations with bidders would not be allowed
- It is a structured procedure that requires bidders to be scored against pre-set award criteria
- Once underway, it is a faster procedure than competitive dialogue
- Competitive dialogue
- Competitive dialogue is better suited to complex projects
- It allows the authority to negotiate with bidders directly on technical, legal and financial matters
- It is a more flexible procedure, with no set format for the dialogue to follow
- Less-detailed pre-specification work is required compared to a restricted contract, so the procedure can begin earlier

Recommendations

7. In order to support recommendations 1, 2, 3, 5 and 6, the authority should not pre-specify its requirements in detail nor prepare a detailed specification before going out to tender
8. As a consequence of recommendation 7 , and with an understanding that various technical solutions are available to meet the authority's needs, the 'competitive dialogue' procurement procedure should be adopted (subject to final legal advice)

9. Conclusion

9.1 The T\&F Group believes that there are many uncertainties in relation to future waste volumes in Warwickshire. Therefore, flexibility has to be the essential characteristic of any contract(s). These recommendations have been developed accordingly, and should ensure the authority is able to deliver bestvalue outcomes for residents over the long-term.
9.2 The Chair would like to thank Members of the T\&F Group for their active participation; representatives from the Warwickshire Waste Partnership, SKM Enviros and Friends of the Earth who contributed to the Select Committee day; plus County Council officers for their co-operation in this valuable scrutiny review.

Report Author: Richard Maybey, Democratic Services Officer
Head(s) of Service: Greta Needham, Head of Law and Governance
Strategic Director(s): David Carter, Strategic Director for Resources
Portfolio Holder(s): Cllr Cockburn

10 August 2011

Scrutiny Review Outline

Appendix A

Rationale
(Key issues and/or reason for doing the review)

Following the withdrawal of Coventry CC and Solihull MC from Project Transform, Cabinet considered a report on future arrangements for waste disposals at their meeting on $18^{\text {th }}$ November 2010. The report explained that with the loss of Project Transform, the Council needs to secure its long-term arrangements for the disposal of waste. A number of Warwickshire's landfill contracts expire in 2013 and it is proposed that these are replaced with contracts that support the diversion of waste from landfill and prevent the authority being fined for failing to achieve Landfill Allowance Targets (LATs). It is therefore proposed that any waste process procured uses technology to support the diversion of waste from landfill. Cabinet authorised the Strategic Director of Environment and Economy to commence a procurement process for a long-term arrangement for the disposal of waste from 2013, on terms acceptable to the Strategic Director of Resources and the Strategic Director of Customers, Workforce and Governance*.

The purpose of the Task and Finish Group is for members to be assured that the County Council has robust processes in place to procure the most appropriate contract for Warwickshire's needs and to manage the various risks associated with it.

For example, members will want to understand why the type of contract has been chosen, how the contract terms have been decided and how it will be monitored when in operation.

Members will also want to consider how the potential impacts on communities and the environment will be assessed and managed. In addition, they will also want to understand the various waste technologies that providers may bring forward (including those approved within the 2005 Waste Strategy and those presented at the Industry Day in June 2011) with a view to highlighting any significant advantages or disadvantages.

This exercise will ensure that there has been democratic involvement in the pre-procurement phase. It will allow assurances to be put forward to Cabinet that the procurement process being adopted is robust, or for recommendations to be made on how the process could be improved.
*UPDATE: Following the recent organisational restructure, we assume the commencement of procurement will now be authorised by the Strategic Director for Communities, on terms acceptable to the Strategic Director for Resources.

Other Work Being	
Undertaken	Household Waste Recycling Centres will be provided in-house and Nuneaton (What other work is currently being be opening a new facility run by the community to recycle goods with
undertaken in relation to	
proceeds supporting local community projects. Also, there are plans to have	
this topic, and any	an open bag policy at all HWRC sites to ensure items that can be recycled do appropriate timescales not end up in landfill. It is intended that the above will be implemented by and deadlines for that

Other Work Being Undertaken
(What other work is currently being undertaken in relation to this topic, and any and deadlines for that 2012.

Household Waste Recycling Centres will be provided in-house and Nuneaton will be opening a new facility run by the community to recycle goods with proceeds supporting local community projects. Also, there are plans to have an open bag policy at all HWRC sites to ensure items that can be recycled do not end up in landfill. It is intended that the above will be implemented by work)

Task \& Finish Group

Agenda

$22^{\text {nd }}$ July 2011

The meeting of the Residual Waste Task \& Finish Group will take place in
Committee Room 2, Shire Hall, Warwick on Friday 22 ${ }^{\text {nd }}$ July, 2011 at 10.00am.
The agenda will be:-

1. General

(1) Apologies for Absence
(2) Members' Declarations of Personal and Prejudicial Interests

Members are reminded that they should declare the existence and nature of their personal interests at the commencement of the item (or as soon as the interest becomes apparent). If that interest is a prejudicial interest the Member must withdraw from the room unless one of the exceptions applies.

Membership of a district or borough council is classed as a personal interest under the Code of Conduct. A Member does not need to declare this interest unless the Member chooses to speak on a matter relating to their membership. If the Member does not wish to speak on the matter, the Member may still vote on the matter without making a declaration.
2. Present and future waste in Warwickshire Glenn Fleet to provide information on the present and future of waste disposal in Warwickshire.
3. Residual waste technologies and environmental risks

Ali Haycox from SKM Enviros will provide the T\&F Group with an overview of the residual waste technologies available and the possible environmental risks associated with them.
4. Assessing environmental and community impacts

Tony Lyons to explain how environmental and community impacts will be assessed through the Core Strategy.

5. Friends of the Earth

Keith Kondakor from Friends of the Earth to inform the T\&F Group of its view of the technologies being considered, and the environmental issues it believes should be taken into account during procurement.
6. Warwickshire Waste Partnership

A roundtable discussion to seek the views of Borough and District representatives of the Warwickshire Waste Partnership.
7. Restricted contract

Suzanne Burrell to outline why Warwickshire County Council is pursuing a restricted contract.
8. Summing up

The T\&F Group to discuss the findings of this meeting, decide what further actions that may be required and any recommendations to be included in the report from information given.

9. Any other business

10. Date of next meeting

TBA - Please bring your diaries
For further information please contact:
Richard Maybey, Democratic Services Officer, Tel: 01926476876
E-mail richardmaybey@warwickshire.gov.uk
Michelle McHugh, Overview and Scrutiny Manager, Tel: 01926412144
E-mail michellemchugh@warwickshire.gov.uk
Jim Graham
Chief Executive

Attendees

Task \& Finish Group members

Cllr Richard Chattaway (Chair)
Cllr Clare Hopkinson
Cllr Barry Lobbett
Cllr John Whitehouse
Warwickshire Waste Partnership
Cllr Hayden Phillips and Olivia Davies (North Warwickshire Borough Council)
Cllr Bill Sheppard and Brent Davis (Nuneaton \& Bedworth Borough Council)
Sean Lawson and Andy Lawson (Rugby Borough Council)
Cllr Mike Brain and Olly Scholefield (Stratford District Council)
Becky Davies (Warwick District Council)

Invitees

Ali Haycox (SKM Enviros)
Keith Kondakor (Friends of the Earth)
County Council officers
Suzanne Burrell, Senior Solicitor
Kitran Eastman, Partnership and Strategy Manager
Glenn Fleet, Waste Management Manager
Tony Lyons, Principal Planning Officer
Richard Maybey, Democratic Services Officer
Louise Wall, Head of Sustainable Communities

THIS PAGE IS BLANK

Warwickshire's
 Waste Present and Future

Glenn Fleet

Waste Management
Communities Overview and Scrutiny
22 July 2011

Crecycle for Warwickshire

Unaudited Figures 2010-11

> Total Municipal Waste 282,794 tonnes
$>$ Waste reduction 9,268 tonnes
$>$ Recycling and composting = 49.1\%
$>$ Total recycling, composting and reuse increased to 129,603 tonnes
> Waste reduction in 2010/11 by 3.27\%
$>90,110$ tonnes of waste sent to Landfill
$>49,350$ tonnes of waste goes to Cov \& Solihull EFW
$>5,000$ tonnes used for Refuse Derived Fuel

Waste in Warwickshire since 2005

Appendix C

WCC Waste Destinations in 2012

Current contracts in place for residential waste?

c 50,000 tonnes of residual waste sent to current EfW facility at Coventry until 2015/16, or 2017/18 including the two year extension;
c 5,000 tonnes of residual waste sent to Refuse Derived Fuel (RDF) facility until 2014/15
c 35,000 sent to W2R from 2014/5
c Capacity at Bubbenhall landfill until possibly 2025
c End of other current landfill contracts from 2012/13 (possible two year contract extension option available)

Housing Table - changes to housing projections

'Option 1' RSS Ph 2 Review - Consultation				RSS Panel Sept 2009	Household Projections
Jan - Mar 2007					2006-based (Using House-Group
Area	2001-26	Built 2001-6	Balance 2006-26	2006-26	2006-21 (+/- net.mig.) (inc. 3\% vacancies)
Coventry	19,000	2,289	16,711	33,500	$\begin{array}{r} 25,235 \\ (-16,560) \\ \hline \end{array}$
Solihull	11,000	2,861	8,139	10,500	$\begin{array}{r} 16150 \\ (+1680) \end{array}$
NWBC	3,100	601	2,499	3,000	$\begin{array}{r} 5097 \\ (+1,962) \end{array}$
NBBC	10,000	2,886	7,114	11,000	$\begin{array}{r} 10,194 \\ (+2,110) \\ \hline \end{array}$
RBC	7,100	2,013	5,087	11,000	$\begin{array}{r} 9,137 \\ (+4,623) \end{array}$
SDC	7,200	2,963	4,237	$\begin{array}{r} 7,500 \\ (06-21) \\ \hline \end{array}$	$\begin{array}{r} 14,278 \\ (+11,393) \end{array}$
WDC	11,600	3,934	7,666	11,000	$\begin{array}{r} 20,397 \\ (+14,604) \end{array}$
Warwickshire	39,000	12,397	26,603	43,500	$\begin{array}{r} 59,665 \\ (+34,692) \\ \hline \end{array}$
CSW Total	69,000	17,547	51,453	Drect, 87,500	$\text { for Warwick } \underset{(+19,812)}{100,940}$

Appendix C

Waste Projections

			Contractual Disposal						Remaining Residual		
Year	Housing Figures*	Recycli for Municip al Waste (\%)	Inerts Landfilled (tonnes)	Total Waste sent to W2R (tonnes)	Waste sent to (old) Coventr y EfW (Tonnes) under 2010-16 contract	Total Waste sent Refuse Derived Fuel Plant (Tonnes)	Contract to Bubben hall (contrac ted tonnage)	Other Contra cted Landfil I (tonna ge)	0.5\% growth in munici pal	0.92\% growth in municip al in line with ONS housing growth	Project transform predicted growth
$\begin{gathered} 2011 / 1 \\ 2 \end{gathered}$	268,383	49	7,651		50,000	5,000	50,000	30,000	504	504	21,188
$\begin{gathered} 2015 / 1 \\ 6 \end{gathered}$	249,423	56	7,805	35,000			32,805		49,260	50,734	70,158
2020/1	261,110	60	8,002	35,000			19,371		54,054	57,732	74,943
2025/6	273,344	60	8,205	35,000			11,438		64,724	70,917	88,130
2030/1	286,151	67	0	35,000			6,754		50,884	58,106	72,203
2035/6	299,434	67	0	35,000			3,988		55,989	65,551	79,795
$\begin{gathered} 2039 / 4 \\ 0 \end{gathered}$	310,607	67	0	35,000			2,617		59,275	70,823	85,218

Future

All waste estimated on 0.5\% growth per year	$2012 / 13$	$2015 / 16$	$2019 / 20$	$2027 / 8$
Total Municipal Waste	278,566	282,766	288,464	300,206
Recycling, Composting and Reuse	139,283	158,349	173,078	201,138
Inerts Recycled and Reused	8,678	8,789	8,940	9,250
Recycling rate	50%	56%	60%	67%
Remaining Municipal Waste for disposal	130,605	115,628	106,446	89,818
Coventry EfW	50,000	49,823	0	0
W2R	0	35,000	35,000	35,000
Other market technology	5,000	0	49,923	44,553
Bubbenhall Landfill	45,000	30,805	21,523	9,265
Other Landfill	30,605	0	0	0

Future

What do we know already?
c. Recycling rate of 60% by $2015 / 16$
c. Recycling rate of 67% by $2027 / 8$
c Street sweeping recycling 10,000 tonnes from 2012
c 35,000 tonnes sent to W2R from 2014/5
c 30,805 tonnes into Bubbenhall landfill 2015/6
c. 47,442 tonnes remaining to treat by other means other than landfill by 2016/17

Corecycle for Warwickshire

Future

WCC Waste Destinations in 2020

Appendix C

Any Questions Thanks

WARWICKSHIRE WASTE CORE STRATEGY

PREFERRED OPTIONS AND POLICIES

Tony Lyons
Principal Planning Officer
Planning and Development Group

BACKGROUND

- Previous Consultations in 2006 and 2007
- Comments considered and guided the development of the 2008 Document
- 2008 document delayed due to spatial implications of Project Transform
- Taken the 2008 Document and refined and reassessed options
- Regional Spatial Strategy - provides the most up to date evidence base
- EU Waste Framework Directive

Core Strategy Timetable

- Emerging Spatial Options: March - May 2011
- Preferred Option and Policies: Sept - Oct 2011
- Publication: January 2012
- Submission: Summer 2012

Waste Management Principles

- Waste Hierarchy
- Principle of Proximity
- Self Sufficiency
- Treat waste as a resource
- Waste should be treated as close as possible to where it is produced.
- Most waste is produced in urban areas.
- Reduce waste to landfill
- Encourage Reduction, Re-use and Recycling

Key ISSUPS \rightarrow POIICM Principles

- Principles of waste management
- Locational Strategy
- Strategic sites
- Treatment Gap
- Municipal Waste
- Commercial and Industrial Waste
- Construction and Demolition Waste
- Hazardous Waste
- Other Wastes
- Safeguarding
- Landfilling
- Impact on the Environment
- Implementation and Monitoring

Environmental Impacts

Policy DM1 - protection of the natural and built environment

New waste development must protect ,and where possible enhance, the natural and built environment by ensuring that there are no unacceptable adverse impacts upon:

- natural resources (including water, air and soil);
- biodiversity;
- geodiversity;
- archaeology;
- the quality and character of the landscape;
- residential amenity; and
- the distinctive character and setting of the County's settlements.

Waste management proposals must demonstrate through an objective assessment that features, species and sites (and their settings) of international and national importance will be preserved or protected, and where possible, enhanced. Such sites will include (but may not be exclusively):

- European designated sites that form part of the Natura 2000 network (e.g. Ensor's Pool Special Area of Conservation)
- Areas of Outstanding Natural Beauty (e.g. the Cotswolds AONB)
- Sites of Special Scientific Interest (SSSI)
- Scheduled Ancient Monuments
- Registered Battlefields
- Conservation Areas
- Registered Parks and Gardens
- Listed buildings

Environmental Impacts

Proposals must also seek to maintain and/or enhance recognised sites, features species and habitats of sub-regional or local importance. Such sites will include (but may not be exclusively)

- Local Geological Sites (LGSs) /potential Local Geological Sites (pLGSs)
- Local Wildlife Sites (LWSs) I potential Local Wildlife Sites (pLWSs)
- Local Nature Reserves
- Species and habitats identified in the Warwickshire, Coventry and Solihull Local Biodiversity Action Plan
- Features of local archaeological importance
- Open space, sports and recreational facilities/land (particularly those identified in District Local Plans/Development Frameworks as of local importance)
- The County's Footpath network

Proposals will only be permitted where adverse impacts will be
i) avoided; or
ii) satisfactorily mitigated where an adverse impact cannot be avoided; or
iii) (as a last resort) adequately compensated to bring wider social, economic or environmental benefits where the adverse impacts of the development cannot be avoided or satisfactorily mitigated.

Health and Amenity Impacts

Policy DM2 - Managing health and amenity impacts of waste development

Waste management proposals will be permitted where it can be demonstrated that the development will have no significant adverse impacts on the local environment or communities through any of the following:

- Human Health
- Noise
- Lighting/illumination
- Visual intrusion
- Vibration
- Odour
- Dust
- Emissions
- Contamination
- Water quality impacts
- Transport impacts

Sustainability Appraisal

No.	Warwickstire sa obective	Spatial Option 1 Levelop new tacilties County wide on industrial estates. bounfield industrial land and existing waste management facilties.			Spatis Option 2			Spatial Option 3			Spatial Option 4			Spatial Option 5		
					Develop new taciftes County wide on existing waste managemert facilities.			Develop new tacities on ndustal estates, brownofield industrial land and existingthe main settlements of over 6,000 population within within vifaruck stire: Hicester, thersone, Bedworth, Bultingon, Colestill. Kenilworth, Leamingon spa, Nuneaton. Boleswoth and Dordon, Rughy. Souham. Stuatford, Wanwick and hiel estoume.			Develop new tacities on ndustial estates. prownfield industrial land and existing waste management facilities within, or in close proxirrity (i.e. approx . skm) to the main setterments of over 6,000 population i.e. Acester, Aherstone, Bedworth. Bulkingon. Colestill. Kenilworth. Leamington Spa, Nuneston. Polesworth and Dordon. Rugby. Southam, Srationd upon Avon. viranuck and willespoume.			A'setlement heraromy option based on areas of higher population andior existing waste managemert capacty		
								Effect + + + , + 0, $-,-7, \%)$			Effect + + + , +,0, $-\frac{-\gamma, \%)}{}$			Effect(++, +, 0, -, -7, ?)		
		ST	MT	LT												
1	Consenve and enhance biodiversity	-	0	+	-	+	++	-	+	++	-	+	+	-	+	++
2	Protect and improve water resources	0	+	++	0	+	++	0	0	+	0	0	+	0	+	++
3	Arond, reduce and manage flood risk	+	++	++	+	+	+	0	0	0	0	+	+	0	+	+
4	Sateguard empirormertal quality.	-	-	-	0	+	+	-	0	+	-	+	+	-	+	++
3	lo minimise potential impacts on cormmunity health	0	0	0	+	+	+	-	-	-	0	0	-	-	-	-
6	10 consenve and enhance the character and quality of the Lourtys landscape and townscape	-	-	0	+	++	++	-	0	+	-	0	+	0	0	+
7	Presenve and enhance sites. features and areas of histonc. archaeological or architectural importance. and their settings	0	0	0	+	+	+	-	0	+	-	0	+	0	0	+

Sustainability Appraisal

Spatial Option 5 - A 'settlement hierarchy' option based on areas of higher pop ulation and/or existing waste management capacity

Spatial Option 5 - A 'settlement hierarchy' op tion based on areas of higher population and/or existing waste management capacity									
SAOhjective		Predicted Nature of Effect Positive	Predicted Nature of Effect Negative	$\begin{gathered} \text { Spatial Option } \\ \hline \text { Net Effect } \\ (+i+,+, 0,-,-i-) \end{gathered}$			Commentary/ Explanation Note predicted nature of effect, how who and where it will impact and enhancement orportunities	Enhancement and mitigation	
		ST		MT	LT				
1	Conserve and erhance biodiversity		Option helps to conserve the wildife populations and habitats in remote rural areas. Relatively large choice of sites will enable greater scope for conservation of importart ecological sites amdiorthe enhancement of less biodixense. sites.	Likely to be negative inpacts on wildlife populations and habitats in the shoort temn such as through noise, vibration, polhtion etc. during the initial construction phase. Potertially a limited opporturity for significantly enhancing wildlife populations and habitats thuough waste development.	-	+	++	The benefits of the option over the long term are likely to outweigh the short term negative effects from new development (noise, vibation, polbtion etc.)	Options provides a wider choice of sites for consideration Care should be taken to preserve the areas of localiregional/national/European ecobgical importance. Local, short temn negative impacts could be mininised/elininated through appropriate design and site mamagemert. Furthemore, there is potertial for effective design to help enhance biodiversity for certain sites.
2	Protect and improve water resources	Scope of the option allows potertially mone bcations to be considered, enabling the protection (and potertial improvement) of certain water resources.		0	+	++	Generally cleaner technobgies should be adopted in new waste mamagemert facilities and should protect and improve local water resounces in the bry term	Diligert site selection will be required to protect water resources. Less reliance on landfill over the plan period should prevert ary additional inquacts. Continued monitoring will be required to ensure water resources are not conquomised, in particular the A von and Tame catclunents. Scope to minimise any negative inpact on water resources (and potertially provide enhancement) through appropriate site design.	
3	Avoid, reduce and mamage flood risk	The Strategic Flood Risk Assessment will help in reducing flood risk as far as possible. New development would have to 00 mp ly with building cortrol requiremerts (SUDs, recycling nairwater etc.) Scope of option means that there are more sites available for consideration	Exiting waste sites maybe located in flood risk zones.	0	+	+	The SFRA Sequential Test will site development in bw flood risk areas to mitigate against the negative effects of flooding.	Sites would be diligertly chosen with respect to their potertial inpacts on the ervirorment inchuding flood risk, population and eoonomy. The region is particularly prone to flooding, so diligert site selection is key to minimising the risk.	

Consultation

- 6 Week timescale - Avoiding holidays /elections
- Districts / Boroughs / Parishes Statutory Consultees / Other adjoining Authorities/ Local Groups/ Previous Consultees/ Industry/ Quangos
- Waste Forum with industry / Library Drop-Ins / Locality and Area Forums when requested where resources available.
- Different formats: Hard copies / CD’s / Online
- Respond through the Consultation Database on web site, email, letter, questionnaire.

SKM ENVIROS

Overview of Treatment Processes

$22^{\text {nd }}$ July 2011
Ali Haycox
\rightarrow Drivers for change
\rightarrow Core objectives for Warwickshire
\rightarrow Waste treatment technologies
\rightarrow Mechanical Biological Treatment (MBT)
\rightarrow Mechanical Heat Treatment (MHT)
\rightarrow Advanced Thermal Treatment (ATT)
\rightarrow Incineration
\rightarrow Summary

Drivers for change

$\rightarrow \quad$ Legislation, policy \& targets
\rightarrow Landfill Directive
\rightarrow Waste Strategy 2007
\rightarrow Fiscal
$\begin{array}{ll}\rightarrow & \text { Landfill Tax } \\ \rightarrow & \text { LATS fines }\end{array}$
\rightarrow Waste Hierarchy

Sustainable Waste Management Agenda Climate Change Social acceptability \& local opposition Limited suitable void space

Core objectives for Warwickshire

\rightarrow Achieve local \& national aims
$\rightarrow \quad$ Meet the targets set
\rightarrow Reliable
\rightarrow Proven
\rightarrow Offer value for money
$\rightarrow \quad$ Flexible
\rightarrow Promote sustainability
\rightarrow Deliverable in planning arena
\rightarrow Deliverable against the timescales
\rightarrow Secure markets for outputs
\Rightarrow Able to secure funding

Role of New Technologies

5

Mixed
(Municipal Solid Waste)

Segregated (e.g. garden/kitchen)

Dry (recyclables)

Mechanical Biological Treatment (MBT)

\rightarrow Process
\rightarrow mechanical preparation and separation
\rightarrow biological treatment
\rightarrow mixed waste in to usable fractions \& / or render it more "stable" for deposit into landfill.
\rightarrow Only a "pre-treatment" option
\rightarrow Requires markets for outputs
Range of capacities 50 - 300ktpa
Energy demand unless including AD
Relatively good track record
Flexible
Cost effective, depending on value of outputs

Mechanical Treatment

Aerobic Digestion - In-vessel Composting

$\Rightarrow \quad$ Long term composting operation
\rightarrow Inputs
\rightarrow source segregated organics
\rightarrow separated organic rich fraction of mixed waste
\rightarrow Outputs
\rightarrow compost-like output (CLO)
\rightarrow Dependent on quality \& characteristics of outputs, regulations \& markets
\rightarrow Windrow is not applicable to MBT due to ABPR

\rightarrow Premier Waste,
County Durham

Bioganix, Herefordshire

\rightarrow
Envar, Cambridgeshire

Anaerobic Digestion

\rightarrow Degradation in the absence of oxygen by bacteria
$\rightarrow \quad$ Needs water, heat, carbon \& nitrogen
\rightarrow Enclosed system
\rightarrow Commonly used for sewage sludge \& farm slurries
\rightarrow Inputs
\rightarrow source segregated organics
\rightarrow separated organic rich fraction of mixed waste
\rightarrow Outputs
\rightarrow biogas - electricity - CHP
\Rightarrow digestate (solid \& liquor)
\rightarrow some rejects to landfill

\rightarrow Biocycle AD, Shropshire

\rightarrow Lubeck MBT AD, Germany
\rightarrow Munster MBT AD, Germany

Bio-Drying

$\rightarrow \quad$ Can use short term forced aeration at front end
\rightarrow Initial rapid composting provides the heat needed to biodry the remaining solids
$\Rightarrow \quad$ In enclosed building with odour control system
\rightarrow Inputs
\rightarrow mixed MSW
Outputs
\rightarrow recyclables
\rightarrow partially stabilised material

$\rightarrow \quad$ In order for it to be 'bio-stable' it would need longer residence times through full composting

MBT Outputs

$\Rightarrow \quad$	Recyclables
	\rightarrow metals
	\rightarrow stones \& glass
	\rightarrow plastics
	\rightarrow textiles
\Rightarrow	Compost
\Rightarrow	Compost Like Output (CLO)

\rightarrow brownfield site remediation
\rightarrow unsuitable for agricultural or grazing land
\rightarrow demonstrate not harmful to human health or environment
\rightarrow requires exemption to avoid counting as landfilled
$\rightarrow \quad$ Renewable energy
\rightarrow biogas from AD
\Rightarrow RDF

Mechanical Heat Treatment (MHT)

\rightarrow Process
\rightarrow mechanical \& thermal processes to separate or prepare mixed waste into usable fractions
\rightarrow waste heated, possibly under pressure, typically $130-180^{\circ} \mathrm{C}$
\rightarrow batch or continuous process
\rightarrow sanitises the waste
$\rightarrow \quad$ Easier to handle \& sort waste following MHT
Limited commercial track record in UK on MSW
Requires some energy input
Relatively low capital cost
Often modular - 100 - 150 ktpa

MHT Outputs

\rightarrow Recyclables
\rightarrow metals
\rightarrow plastics
\rightarrow glass

$\Rightarrow \quad$ Fibre
\rightarrow organics, paper, fines, grits
\rightarrow used as a raw material, RDF or biologically processed to CLO

Advanced Thermal Treatment (ATT)

Wide range of ATT technologies
\rightarrow pyrolysis
\rightarrow gasification
\rightarrow plasma arc/vitrification
$\rightarrow \quad$ High capital costs
\rightarrow Often modular - 15-100 ktpa

\rightarrow Breaks down all organic based material
Potential renewable energy production
\rightarrow Limited commercial track record in UK

Pyrolysis to Incineration Continuum

	Increasing air
No Air	Partial Air Full combustion unable to occur
	Excess Air
	Full combustion of
fuel	

Pyrolysis

Gasification

Incineration

Theoretical point.
Enough oxygen present for combustion of fuel.

Pyrolysis

Gasification

Pyrolysis \& Gasification Outputs

\rightarrow Syngas / pyrolysis oil used as fuel for electricity / heat generation
$\rightarrow \quad$ Char which may be recycled or landfilled
$\rightarrow \quad$ Fly ash / APC residues to landfill
\Rightarrow Metals for recycling

\Rightarrow Tech Trade, Germany

\rightarrow
Scarborough Power, N Yorkshire
\rightarrow Waste Gas Technology, IoW

Incineration

\rightarrow Process
\rightarrow combusts waste under controlled conditions
\rightarrow waste through furnace on moving grate or fluidised bed of sand
$\rightarrow \quad>850^{\circ} \mathrm{C}$
\Rightarrow Renewable energy generation
Significant measures to control emissions
Capacity 90 - 500+ tpa
Cost effective at larger scales 100ktpa+
Capital intensive
Proven on MSW

Incineration Outputs

\rightarrow Energy
\rightarrow steam used to generate electricity
\rightarrow waste heat can be used by local heat user - CHP
\Rightarrow APC residues
\rightarrow hazardous waste treatment
\rightarrow hazardous landfill
$\rightarrow \quad$ Bottom ash can be recycled
\rightarrow Metals extracted for recycling

$\Rightarrow \quad$ Isle of Man
\Rightarrow Vienna, Austria

\rightarrow Marchwood, Hampshire

	MBT	MHT	ATT	Incineration
Capacity (ktpa)	50-300	100-150	15-100	90-500+
Proven on MSW in $\begin{gathered} \text { UK } \\ (\max \checkmark \checkmark \checkmark) \end{gathered}$	$\checkmark \checkmark$	$\checkmark \checkmark$	\checkmark	$\checkmark \checkmark \checkmark$
Inputs	Mixed waste	Mixed waste	Prepared mixed waste RDF	Mixed waste RDF
Outputs	Energy Recyclables CLO RDF	Recyclables Fibre	Energy Recyclables Pyrolysis oil/syngas Char Fly ash	Energy Bottom ash Metals Fly ash
Environmental Performance	Increased recycling Potential for energy generation Need markets for outputs	Increased recycling Energy demand Need market for outputs	Prefers pre-treated input Energy production potential Hazardous output Increase BMW diversion	Flexible to input Energy production Increase BMW diversion Some recycling potential
Diversion Performance $(\max \checkmark \checkmark \checkmark)$	$\checkmark \checkmark$	$\checkmark \checkmark$	$\checkmark \checkmark \checkmark$	$\checkmark \checkmark \checkmark$

Residual Waste Task \& Finish Group

Views on Treatment Options

Keith Kondakor

West Midlands Friends of the Earth

Overview

Friends of the Earth

- Drivers for change
- Key aims for waste treatment
- Problems
- Warwickshire's waste
- Conclusion

The landfill problem

Friends of the Earth

- Methane
- Landfill availability
- Wasted resources
- CO2 emissions
- Cost ~£100/tonne

The incinerator problem

 Friends of the Earth- Wasted resources
- CO2 emissions
- Cost ~ £100/tonne
- Totally Inflexible
- Planning (1 in 7 success rate)
- Taxation overdue
- Liability

Friends of the Earth

- Eliminate most residual waste
- Don't waste resources
- Recycle the carbon
- Plan for shrinking waste disposal
- One planet living

Key Aims for treatment

Friends of the Earth

- Allow us to go for zero waste
- Flexible tonnage
- Short contracts 5-10 years
- Maximise value of Recycling
- Kerbside $1^{\text {st }}$
-Front end 2nd
- Don't count dross

2010-11

Friends of
 the Earth

	North Warwickshire		Nuneaton and Bedworth		Rugby		Stratford		Warwick		Warwickshire (HWRC etc)	
	2009/10	2010/11	2009/10	2010/11	2009/10	2010/11	2009/10	2010/11	2009/10	2010/11	2009/10	2010/11
Number of households	26,741	26,860	53,822	54,140	42,751	43,020	53,899	54,090	59,884	60,160	237,097	238,260
Recycling Rate	2,994 tonnes 10\%	$3,325$ tonnes 12\%	$8,924$ tonnes 17\%	$\begin{gathered} \hline 8,598 \\ \text { tonnes } \\ \\ 16.6 \% \end{gathered}$	10,575 tonnes 27%	10,621 tonnes 26%	14,272 tonnes 27%	14,686 tonnes 27%	10,963 tonnes 22%	10,946 tonnes 22%	$\begin{aligned} & 16,143 \\ & \text { tonnes } \\ & \\ & 35.5 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 13,672 \\ & \text { tonnes } \\ & 33.6 \% \end{aligned}$
Composting Rate	5,116 tonnes 17\%	5,131 tonnes 19%	8,738 tonnes 17\%	8,330 tonnes 16%	$\begin{gathered} \hline 9,711 \\ \text { tonnes } \\ 24 \% \end{gathered}$	9,973 tonnes 25%	16,487 tonnes 31%	17,380 tonnes 32%	13,432 tonnes 27\%	$\begin{gathered} \begin{array}{c} 13,613 \\ \text { tones } \end{array} \\ \\ 27 \% \end{gathered}$	$\begin{aligned} & 11,632 \\ & \text { tonnes } \\ & 25.6 \% \end{aligned}$	13,408 tonnes 33%
Recycling, Composting and Reuse Rate	8,110 tonnes 27%	8,456 tonnes 31%	17,663 tonnes 34%	16,927 tonnes 32.7%	20,319 tonnes 51\%	$\begin{gathered} \hline 20,598 \\ \text { tonnes } \\ 51 \% \\ \hline \end{gathered}$	30,758 tonnes 59%	$\begin{gathered} \hline 32,076 \\ \text { tonnes } \\ 59 \% \\ \hline \end{gathered}$	24,400 tonnes 49%	24,559 tonnes 49%	$\begin{aligned} & \hline 28,086 \\ & \text { tonnes } \\ & 61.8 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 27,115 \\ & \text { tonnes } \\ & \\ & 66.6 \% \\ & \hline \end{aligned}$
Residual	21,945 tonnes $821 \mathrm{~kg} /$ hh	18,556 tonnes $691 \mathrm{~kg} /$ hh	33,896 tonnes $630 \mathrm{~kg} /$ hh	34,868 tonnes $644 \mathrm{~kg} /$ hh	19,529 tonnes $457 \mathrm{~kg} /$ hh	19,743 tonnes $459 \mathrm{~kg} /$ hh	$\begin{gathered} 21,711 \\ \text { tonnes } \\ 403 \mathrm{~kg} / \\ \mathrm{hh} \end{gathered}$	$\begin{gathered} 22,005 \\ \text { tonnes } \\ 407 \mathrm{~kg} / \\ \mathrm{hh} \end{gathered}$	25,092 tonnes $419 \mathrm{~kg} /$ hh	$\begin{gathered} 25,486 \\ \text { tonnes } \\ 424 \mathrm{~kg} / \\ \mathrm{hh} \end{gathered}$	$\begin{aligned} & 17,393 \\ & \text { tonnes } \end{aligned}$	$13,573$ tonnes
Total	$\begin{gathered} 30,056 \\ \text { tonnes } \\ \begin{array}{c} 1,124 \mathrm{~kg} / \\ \mathrm{hh} \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 27,012 \\ \text { tonnes } \\ \begin{array}{c} 1,006 \mathrm{~kg} / \\ \mathrm{hh} \end{array} \\ \hline \end{gathered}$	51,558 tonnes $958 \mathrm{~kg} /$ hh	51,795 tonnes $957 \mathrm{~kg} /$ hh	39,814 tonnes $931 \mathrm{~kg} /$ hh	40,336 tonnes $938 \mathrm{~kg} /$ hh	52,468 tonnes $973 \mathrm{~kg} /$ hh	$\begin{gathered} \hline 54,081 \\ \text { tonnes } \\ 1,000 \mathrm{~kg} / \\ \mathrm{hh} \end{gathered}$	49,492 tonnes $826 \mathrm{~kg} /$ hh	50,046 tonnes $832 \mathrm{~kg} /$ hh	$45,479$ tonnes	40,688 tonnes

2010 \& 201x@60\%

Friends of

the Earth

4. Comparison of 2009-10 and 2010-11 Performance

	2009/2010 Household	2010/2011 Household	060%
Recycling Rate	63,871 tonnes 23.8\%	$\begin{gathered} \text { 61,848 tonnes } \\ 23.4 \% \end{gathered}$	$79182(28 \%)$
Composting Rate	65,116 tonnes 24.3\%	67,835 tonnes 25.7\%	$90494(32 \%)$
Recycling, Composting and Reuse Rate	129,336 tonnes 48.1\%	129,731 tonnes 49.1\%	$169676(60 \%)$
Landfill Rate	112,174 tonnes 41.8\%	85,631 tonnes 32.5\%	$5656(2 \%)$
Energy from Waste and RDF	$\begin{gathered} \hline 27,247 \text { tonnes } \\ 10.2 \% \end{gathered}$	48,447 tonnes 18.4\%	$50 k+35 k$
Total Municipal Waste*	$\begin{aligned} & 292,062 \\ & \text { tonnes } \end{aligned}$	$\begin{gathered} 282,794 \\ \text { tonnes } \end{gathered}$	$282,794$

${ }^{\text {Appentix } F}+\mathbf{+ 2 2 , 4 6 2}$

Thirds

Friends of the Earth

- 30,000-45,000 committed to Four Ashes incinerator >2040? @Ł95/tonne
- 50,000 to Coventry @£60-£70/tonne? 2-6 yrs
- Remaining 1/3 ${ }^{\text {rd }}$ is $0-60,000$ tonnes
- Must be very flexible.
- South of County
- Look at spare capacity at edge - Cotesbach.
- Avoid putting more eggs in thermal treatment
- Look at 7-10 year contract.

Conclusion

Friends of

 the Earth- Small flexible and local treatment plants
- Interim use MBT with stabilized residual landfilled.
- Big plants are high risk - capital - political technical - legal - DO NOT DO IT.
- Reduce waste early
- We have time to look at the best technology being tested now
- Allow for a change to Zero Waste
- Compost - recycle - educate \& educate again

Thanks

Friends of the Earth

www.foe.co.uk/waste
 Keith Kondakor
 02476344079
 keith@greennuneaton.org.uk

Talking half as much rubbish

Residual Waste - Task \& Finish Group Briefing Note
 22 July 2011

Procurement Process

- Disposal of Waste - is classed as a Part A Service under EU Procurement Regulations (cross boarder interest).
- Total Contract Value likely to exceed EU threshold $(£ 156,442)$
= EU Procurement (Advert published in the EU Official Journal (OJEU))

Procurement Procedures

When a contract must be advertised in the OJEU in accordance with the EU Procurement Regulations, the Council must decide which procedure it will use when carrying out the procurement process. Under the Regulations the four main options are the open, restricted, negotiated or competitive dialogue procedures.

This briefing note will discuss the two options which may be best suited for the residual waste procurement. They are the restricted procedure and the competitive dialogue procedure.

(i) Restricted Procedure

- This procedure is a two stage process.

First Stage

- The Council will publish a contract notice in the OJEU. Interested parties can submit an expression of interest in response to the OJEU Notice.
- The Council will then carry out a short-listing exercise using a pre-qualification questionnaire and only those meeting the Council's selection criteria will be invited to tender.
- EU procurement rules clearly state what criteria can be used at the pre-qualification stage of a procurement process for short-listing suppliers to be invited to tender i.e. economic and financial standing and technical and professional ability.
- Selection criteria should be used to assess whether a tenderer satisfies minimum levels of economic and financial standing, and its technical or professional ability. Selection criteria should focus on the tenderer (as an entity) and not the proposal or tender it submits.

Second Stage

- Following an assessment of those providers who have expressed an interest against the Council's selection criteria, the Council must draw up a shortlist of those providers. A minimum of five providers must be invited to tender (unless fewer suitable candidates have met the selection criteria and these are sufficient to ensure genuine competition).
- These short listed providers then submit a tender detailing how they meet our requirements. The Council will evaluate all tenders received against pre-set award criteria. The award criteria will typically involve quality and price; these criteria will be weighted according to their importance to the Council.

Key principles

1. The chief feature associated with use of the restricted procedure is that no negotiation is allowed and therefore the Council must be able to pre-specify in detail all of its requirements before inviting tenders.
2. In practical terms, this requires that the Council has certainty as to the precise scope of the contract and it will need to prepare the detailed specification and contract in advance of inviting tenders.
3. It is possible to address some of the constraints of not being able to engage in dialogue with tenderers under the restricted procedure by requesting variant bids.
4. The restricted procedure is a quicker procedure compared to the Competitive Dialogue Procedure.

(ii) The Competitive Dialogue Procedure

This procedure is designed for the award of particularly complex contracts where the Council needs to discuss all or some of the aspects of the proposed contracts with the providers.

Process

1. Interested parties can submit an expression of interest in response to the OJEU Notice.
2. The Council may then carry out a short-listing exercise (using a PQQ) and only those meeting the Council's selection criteria will be invited to dialogue.
3. A minimum of three suppliers must be invited to dialogue (unless fewer candidates have met the selection criteria and these are sufficient to ensure genuine competition, that is, at least two).
4. The Council enters into a dialogue with bidders to develop one or more suitable solutions to meet its needs. There is no set format that the dialogue must follow, it will usually consist of a series of meetings with each tenderer with each meeting focusing on different aspects of the procurement, for example:

- financial;
- technical; and
- legal.

5. When an appropriate solution(s) has been identified, the Council will conclude the dialogue phase and invite final tenders.

Key Principles

1. This procedure is only available for particularly complex contracts where:
o the Council is not objectively able to define the technical means to satisfy its needs;
o it is not objectively able to identify in advance the legal and/or financial make-up of a project; or
o the Council does not consider that the contract can be awarded under the open or restricted procedures.
2. The European Commission has clearly stated that "if the authority is in a position to define the technical resources necessary or establish the legal and financial framework, the use of the Competitive Dialogue is not possible". Therefore the competitive dialogue is available where the Council is not able to produce a single specification or legal/financial documents at the outset which would enable it to identify the best solution to meet its needs.
3. Examples of where this process is the most appropriate procurement procedure:

- The technical means necessary to deliver the needs and requirements of the authority cannot be determined without bidder input (technical justification);
- There may be a number of technical solutions available which means that the Council cannot define its needs at the outset, thus justifying use of the competitive dialogue procedure (technical justification).
- The project requires the development of an innovative solution, which must be explored with the bidders (technical justification);
- There are several delivery models suitable for the project (e.g. joint venture company, joint committee etc), the legal framework of which must be discussed with bidders (legal justification);
- Payment and performance mechanisms cannot be adequately specified before engagement with bidders (financial justification);
- The financial and legal make-up cannot be defined in advance, because issues such as risk allocation, how the project is going to be carried out and financed (legal and finance justification).

4. Using the Competitive Dialogue Procedure allows bidders to discuss technical, legal and/or financial complexities with bidders and find a solution (in some cases an innovative solution) that meets the Councils needs.
(i) Can WCC pre-specify its requirements in detail before going out to tender?
(ii) Does WCC have certainty to the precise scope of the contract and can it prepare a detailed specification before going out to tender?
(iii) Is it possible to address any 'grey' area in relation to the contract by requesting tenders submit variant bids?

If the answers to the above are YES then the restricted procedure is most suited.

However if WCC are of the view that:
(i) There may be a number of technical solutions available which means it cannot define its requirements in detail at the outset; and/or
(ii) WCC believes that the project requires the development of an innovative solution which must be explored with the bidders; and/or
(iii) The financial (e.g. payment and performance mechanism) and legal make-up cannot be specified before engagement with bidders?

If the answers to any of the above questions are YES then the Competitive Dialogue Procedure may be best suited.

Initial Legal Advice

If WCC is able to clearly pre-specify in detail all the requirements of the residual waste contract before inviting tenders, I advise that the restricted procedure is used. Note this may mean engaging the market further (more market testing) before inviting tenders, this is because once the procurement is commenced using the restricted procedure, negotiations are prohibited i.e. we are bound by the documentation we release.

If WCC is experiencing difficulty pre-specifying all requirements of the contract, it is important to note the Competitive Dialogue process allows a unique opportunity to discuss and fully understand different bids and to develop solutions that will genuinely meet your needs. However, it needs to be managed and focused in order to avoid becoming a high level discussion which simply wastes time and money (both the Council's and bidders').

There is no set process for how the Council undertakes the Competitive Dialogue process. In order to have an effective and efficient process most Councils are adopting a 'short form' Competitive Dialogue process. This is where the Council identifies areas which it wants to dialogue and those it does not, this means that the non negotiable areas are taken 'off the table' and meaningful dialogue can take place in relation to those issues that need solutions. If there are only a few issues, the dialogue process can be completed in a short time.

Suzanne Burrell

21 July 2011

[^0]: ${ }^{1}$ Note: these viable technologies included Mechanical Heat Treatment (MHT), which was not presented at the Industry Day. Conversely, Autoclave was not covered by the presentation, but was presented at the Industry Day

